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Abstract

In the present work, innovative analytical techniques, such as an amperometric electronic tongue and a commercial electronic nose
were used, together with spectrophotometric methods, to predict sensorial descriptors of Italian red dry wines of different denominations
of origin. Genetic Algorithms were employed to select variables and build predictive regression models. On the selected models, an accu-
rate validation technique (the Bootstrap procedure) and a procedure for the detection of outliers (Williams plot) were applied.

The results obtained demonstrate the possibility of using these innovative techniques in order to describe and predict a large part of
the selected sensorial information. It was not possible to build an acceptable regression model for only one descriptor, sourness.

The proposed analytical methods have the advantage of being rapid and objective; furthermore, the statistical methods applied could
be considered a rational operative procedure for building regression models with real predictive capability.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

It is well known that the sensory characteristics of wine
are influenced by a broad spectrum of factors, such as type
of grape, soil, enological and climatic conditions. Gener-
ally, sensory analysis, based on trained expert panellists,
is useful for wine classification and quality control but it
is of high-cost, time-consuming and sometimes without
any objective value. In recent decades many efforts have
been made to establish a relationship between sensory attri-
butes and chemical composition of wine, in order to under-
stand which components influence the sensory properties
and the final quality of the product. These are based on tra-
ditional chemical measurements and on spectrophotomet-
ric or chromatographic determinations, coupled with
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classical chemometric techniques, such as principal compo-
nent analysis (PCA) and partial least square (PLS) analysis
(Aznar, Lopez, Cacho, & Ferreira, 2003; Bertuccioli, Cle-
menti, Giulietti, & Montedoro, 1989; Boselli, Boulton,
Thorngate, & Frega, 2004; Cliff, Brau, King, & Mazza,
2002). However, these analytical schemes cannot fully
replace sensorial examinations and often they are time-con-
suming and require skilled personnel. It is, therefore, of
great interest to develop low-cost, rapid and non-destruc-
tive analytical procedures, able to quantify the sensorial
descriptors and the overall quality of wines.

In this paper, innovative, rapid and objective analytical
techniques, such as the electronic nose (e-nose) and the
electronic tongue (e-tongue), coupled with spectrophoto-
metric methods, were used for objective sensorial evalua-
tion of wine. Signals from the instruments were used to
build predictive models of sensorial descriptors by means
of Genetic Algorithms (GAs).
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The e-nose consists of an array of gas sensors useful for
the analysis of the head space of liquid or solid food sam-
ples (Dickinson, White, Kauer, & Walt, 1998; Shaller, Bos-
set, & Escher, 1998); the e-tongue comprises an array of
sensors that are specific for liquids and based on conducti-
metric, potentiometric and voltammetric techniques (Win-
quist, Holmin, Krantz-Rulker, Wide, & Lundstrom, 2000).
In this work, a commercial e-nose and a home-made e-ton-
gue, based on a Flow Injection system, with two ampero-
metric detectors, were used.

Genetic Algorithms (GAs) were proposed as an alterna-
tive to the mostly used PLS analysis and were employed to
select subsets of variables that maximize the predictive
power of regression models. The regression models selected
were subsequently validated by the Bootstrap procedure,
that provides a more certain evaluation of their predictive
capability while the Williams plots was used to check the
presence of outliers.

2. Materials and methods

2.1. Wine samples

Measurements were performed on 15 Italian dry red
wines of different denominations and vineyards (Table 1).
An expert wine taster selected the wines, on the basis of
their well-known sensorial characteristics, e.g. astringency,
bitterness, acidity, body, aroma and colour.

2.2. Electronic nose

Analyses were performed with a Portable Electronic
Nose (PEN2) operating with the Enrichment and Desorb-
tion Unit (EDU). The system was from WMA (Win Mus-
ter Airsense) Analytics Inc. (Germany). PEN2 consists of a
sampling apparatus, a detector unit containing the array of
sensors, and pattern recognition software (Win Muster
v.3.0) for data recording. The sensor array is composed
of 10 Metal Oxide Semiconductor (MOS)-type chemical
sensors: MOS1 (aromatic) MOS2 (broadrange), MOS3
Table 1
Italian dry red wines considered in the experimentation

Wines Vineyard

Pinot nero alto adige DOC Pinot Nero
Brusco dei barbi IGT Sangiovese
Morellino di scansano DOC Sangiovese
Primitivo del salento IGT Primitivo Nero
Val calepio rosso DOC Merlot – Cabernet Sauvignon
Aglianico IGT Aglianico Rosso
Inferno DOC Nebbiolo
Vallegorina Negrara
Santa costanza novello IGT Sangiovese, Gamay
Lacrima di morro DOC Lacrima Nero
Dolcetto DOC Dolcetto Nero
Bonarda oltrepò DOC Corvina Nero
La segreta rosso IGT Nero d�Avola, Merlot
Colline novaresi DOC Nebbiolo, Bonarda
Val di cornia suvereto rosso DOC Sangiovese
(aromatic), MOS4 (hydrogen), MOSS (arom-aliph),
MOS6 (broad-methane), MOS7 (sulphur-organic), MOS8
(broad-alcohol), MOS9 (sulph-chlor), MOS10 (methane-
aliph).

EDU is a microprocessor-controlled device capable of
automatically trapping and thermally desorbing the samples.
The adsorbent material is Tenax-TA� polymer, 150 mg.

The e-nose operating procedures are the same as
reported in a previous work (Buratti, Benedetti, Scampic-
chio, & Pangerod, 2004).

2.3. Electronic tongue

A measurement system based on Flow Injection Analy-
sis (FIA) with two amperometric detectors was employed.

The FIA apparatus consisted of a Jasco (Tokyo, Japan)
model 880 PU pump and two EG&G Princeton Applied
Research (Princeton, NJ, USA) Model 400 thin-layer elec-
trochemical detectors connected in series. Each detector
was equipped with a working electrode (a dual glassy car-
bon electrode and a gold electrode), a reference (Ag/AgCl
saturated) electrode and a platinum counter electrode. The
connecting tubes were of PEEK (1.5 mm o.d. · 0.5 mm
i.d.). Data were recorded using a Philips (Eindhoven, Neth-
erlands) PM 8252 recorder.

In the flow system, a carrier solution is continuously
pumped through the amperometric detectors and the sam-
ples are injected into the flow stream. Data are obtained by
measuring the current resulting from the oxidation or
reduction of the electroactive compounds present in the
samples.

The overall configuration of the system and the operat-
ing procedures are the same as reported in a previous work
(Buratti et al., 2004).

2.4. Spectrophotometric determinations

2.4.1. Analyses of phenolics
A modified version of the Glories method was used to

estimate the phenolic contents of wine samples (Romani,
Mancini, Tatti, & Vinceri, 1996). Samples were diluted
1:10 with ethanol 10% and 0.25 ml were placed in a cuvette.
After the addition of 0.25 ml of 0.1% HCl in 95% ethanol
and 4.5 ml of 2% HCl the solution was mixed and the
absorbances at 280 nm (A280), 320 nm (A320), 360 nm
(A360) and 520 nm (A520) were measured.

Total phenols were also determined using the Folin Cio-
calteu method (Singleton & Rossi, 1965).

Anthocyanins were determined using the procedure
described by Mazza, Fukumoto, Delaquis, Girard, and
Ewert (1999). In this procedure, total anthocyanins were
evaluated by adding 20 ll of 10% acetaldehyde to 2 ml
of wine and by reading the absorbance at 520 nm (Aacet).
Polymeric anthocyanins were evaluated by adding to
another 2 ml sample, 160 ll of 5% SO2 and determining
the absorbance at 520 nm ðASO2

Þ. At the same wavelength,
also, the wine absorbance was evaluated (Awine) and



Fig. 1. Wine spectrum for the evaluation of total flavonols and non-
anthocyanic flavonols.
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monomeric and copigmented anthocyanins were deter-
mined as follows:

Monomeric anthocyanins ¼ Awine � ASO2
;

Copigmented anthocyanins ¼ Aacet � Awine.

Flavonoids were determined using the procedure
described by Di Stefano, Cravero, and Gentilini (1989). In
this procedure, wine samples were diluted 1:50 with a solu-
tion of water (30%), ethanol (70%) and HCl (1%) and the
spectrum in the range between 230 and 700 nm was regis-
tered. As shown in the spectrum in Fig. 1, the length of
the segment MT was measured and transformed into absor-
bance units corresponding to the absorbance at 280 nm of
total flavonoids ðA0280Þ. The maximum of absorbance in
the visible (Amaxvis) was also evaluated and the absorbance
of non-anthocyanic flavonoids ðA00280Þ was expressed as:

A00280 ¼ A0280 � Amaxvis=3:5.
2.4.2. Colour evaluation

The colour measurements were performed using a
GARY 100 BIO UV–visible spectrophotometer (Varian)
equipped with GARY UV WIN Software, which is able
to convert the transmittance into L and a/b values. L rep-
resents the difference between light (where L = 100) and
dark (where L = 0), a represents the difference between
green (�a) and red (+a) while b represents the difference
between yellow (+b) and blue (�b) (Wyszecki & Stiles,
1967). For all measurements, glass cells of 1 mm path
length were used. The readings were taken at intervals of
10 nm in the wavelength range 400–700 nm.

2.5. Sensory analysis

The sensory evaluation was conducted according to
UNI U590A1950 (1998). Eight expert wine judges (having
an O.N.A.V. – Organizzazione Nazionale Assaggiatori
Vini – certificate) evaluated 15 Italian dry red wines on
two days. Wines were presented in random order and each
sample was evaluated twice on the same day. No informa-
tion was given to the assessors about the origin of the sam-
ples. The panel tasting took place in an air-conditioned
room (21 �C) with isolated booths. Sensory descriptors
were selected from those more reported in literature.
Judges assessed the aroma (total fruits, wood, spicy), the
flavour (total fruits, wood, spicy) and the taste (sourness
and bitterness). Also astringency, alcohol and body
descriptors were evaluated. Judges scored the magnitude
of each attribute from 1 to 9 where 1 was ‘‘low’’ and 9
was ‘‘high’’. The sensory evaluation was given also in terms
of ‘‘overall quality’’; the eight judges scored the magnitude
of this attribute from 1 to 100. All scorecards were col-
lected at the end of each section, and the average values
given by all eight judges for all the descriptors were used
for the multivariate statistical analysis.

2.6. Data analysis

The regression models were built by means of Genetic
Algorithms (Goldberg, 1989). GAs select subsets of vari-
ables that maximize the predictive power of regression
models and perform this selection by considering popula-
tions of models generated with an evolution process and
optimised according to an objective function (in this case
Q2 leave-one-out, calculated with the ordinary least square
regression) (Leardi, Boggia, & Terrile, 1992). A population
is made of a series of chromosomes. Each chromosome is a
binary vector, where each position (a gene) corresponds to
a variable (i.e. a chromosome represents a model made up
of a subset of selected variables).

The evolution process is based on three main steps: ini-
tially the model population is randomly built. The value of
the objective function of each model is calculated and the
models are then ordered with respect to this objective func-
tion. After that, the reproduction step selects pairs of models
(parents) and, from each pair of models, a new model (son) is
generated preserving the common characteristics of the par-
ents (i.e. variables excluded in both models remain excluded;
variables included in both models remain included) and mix-
ing the opposite characteristics. If the generated son coin-
cides with one of the individuals already present in the
actual population, it is rejected; otherwise, it is evaluated.
If the objective function value is better than the worst value
in the population, the model is included in the population, in
the place corresponding to its rank; otherwise, it is no longer
considered. This procedure is repeated for several pairs. The
mutation step instead changes every gene of each chromo-
some into its opposite according to a defined probability.
If the objective function of each mutated model is better then
the worst value in the population, the model is included in
the population. Reproduction and mutation steps are alter-
natively repeated until a stop condition has occurred or the
evolution process is ended arbitrarily.



Table 2
Variables considered in the experimentation

Variables

Spectrophotometric
determinations

A280; A320; A360; A520; total phenols: total
anthocyanins; polymeric anthocyanins;
monomeric anthocyanins; copigmented
anthocyanins; total flavonoids; non-anthocyanic
flavonoids; Colour (L); Colour (a/b)

E-nose MOS1 ; MOS2; MOS3; MOS4; MOS5; MOS6;
MOS7; MOS8; MOS9; MOS10

E-tongue Carbon electrode 0.8 V (C0.8V); Carbon electrode
0.6 V (C0.6v); Carbon electrode 0.4 V(C0.4V);
Carbon electrode �0.2 V (C�0.2V); Gold electrode
0.4 V(G0.4V)
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Since the quality of a regression model can be evaluated
by its predictive capability, the final models were subse-
quently validated by the Bootstrap procedure. By this val-
idation technique, the original size of the data set (n) is
preserved for the training set: the training set usually con-
sists of repeated objects and the evaluation set of the
objects left out (Efron, 1982). The model is calculated on
the training set and responses are predicted on the evalua-
tion set. This procedure of building training sets and eval-
uation sets is repeated thousands of times and the average
predictive power is calculated (Q2 bootstrap). Thus, the
validation is performed by randomly generating training
sets with sample repetitions and then evaluating the pre-
dicted responses of the samples not included in the training
set. This validation technique is more time-consuming than
the leave-one-out method (generally used in the GAs), but
it provides a more certain evaluation of the predictive
power of regression models (Efron, 1983).

Each model has been analysed to detect the presence of
outliers. An object that is atypical (different from the aver-
age) of the rest of the objects in a data set is deemed an out-
lier. An object may be an outlier with respect to the
independent variables and/or with respect to the response
variable. Regarding the first aspect, the leverage matrix,
H, also called influence matrix, is an important tool in
regression diagnostics containing information on the inde-
pendent variables on which the model is built (Cook &
Weisberg, 1982). The leverage matrix, H, is a symmetric
matrix defined as:

H ¼ X ðX TX Þ�1X ;

where the matrix X is the model matrix, i.e. a matrix with n
rows (where n is the number of samples) and p 0 columns
(where p 0 is the number of model parameters). Samples
whose hii value is greater than a critical value h* can be con-
Fig. 2. Box plot of wine sensorial descriptors and overall quality. For each sen
are shown.
sidered as having a great influence (leverage) on the model.
The critical value h* is defined as:

h� ¼ 3p0

n
.

Regarding the second aspect, the standardised residuals in
prediction (Jackknife) (Johnson & Wichern, 1982) can be
calculated as the ordinary residuals in prediction divided
by the residual standard deviation:

êi ¼
ŷi=i � yi

s �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� hii

p ;

where êi is the standardised residual in prediction of the
ith object, ŷi=i and yi are, respectively, the predicted and
the observed response of the ith object, hii is the leverage
value of the ith object and s is the standard error of the
estimate:

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn
i¼1

ðŷi ¼ yiÞ
2

n� p0

vuuut
;

sorial attribute mean, standard deviation, maximum and minimum values



Fig. 3. Scatter plot of the sensorial descriptors and overall quality estimated by Genetic Algorithms built on e-nose, e-tongue and spectrophotometric data
set. Plots show predicted (s) and calculated (d) versus experimental responses. The R2, Q2 leave-one-out and Q2 bootstrap, values of each model are shown.
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Table 3
List of variables involved in the final models

Sensorial descriptors Model
size

Model variables

Total fruits aroma 4 Total phenols, colour (a/b), MOS1, non-
anthocyanic flavonoids

Total fruit flavours 4 Total phenols, total flavonoids, colour
(a/b), MOS1

Spicy aroma 4 Total phenols, colour (a/b), MOS 1,
MOS 7

Spicy flavour 4 Non-anthocyanic flavonoids, total
phenols, A520, MOS 9

Wood aroma 4 Total phenols, non-anthocyanic
flavonoids, total Anthocyanins, colour
(a/b)

Wood flavour 3 Colour (a/b), colour (L), MOS 7
Astringency 3 C0.6V, C0.4V, G0.4V

Body 4 C0.4V, colour (a/b), colour (L), non-
anthocyanic flavonoids

Alcohol 3 G0.4V, total phenols, total flavonoids
Bitterness 4 Non-anthocyanic flavonoids,

copigmented anthocyanins, Total
anthocyanins, total phenols

Overall quality 4 C0.8V, total flavonoids, non-anthocyanic
flavonoids, total anthocyanins
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where ŷi is the estimated response of the ith object. Objects
whose jêij value is greater than 3 (Cook & Weisberg, 1982)
can be considered as outliers with respect to the response
variable. Leverage and standardised residuals in prediction
are used to build graphics (Williams Plot) for the detection
of outliers and/or objects with high influence on the results.

Genetic algorithms, bootstrap validation and Williams
plots were performed by MobyDigs software (Todeschini,
Ballabio, Consonni, Mauri, & Pavan, 2004).

3. Results and discussion

The selected wines were analysed by three independent
techniques: electronic nose, amperometric electronic ton-
gue and spectrophotometric determinations. These analyt-
ical methods were chosen principally for their rapidity,
objectivity and reproducibility. A data matrix with 15 rows
(wine samples) and 56 columns (variables) was built. Thir-
teen variables were obtained from spectrophotometric
analyses, five from the electronic tongue and ten from the
electronic nose (Table 2). The square value of each variable
was also included in the matrix.

Since the main scope of this paper was to investigate the
capability of extracting from these techniques, information
about the wine sensory properties and quality, the sensorial
analysis was considered as reference method. In Fig. 2, the
box plot of wine sensorial descriptors and overall quality is
shown. Since the overall quality had a magnitude from 1 to
100 and the sensorial descriptors from 1 to 9, the scores
have been scaled in order to make them comparable. Tak-
ing into account how difficult it is to find wines scattered
over the whole scale, the majority of the sensory scores
can be considered widely distributed on the scale, showing
that the wines were adequately chosen.

GAs were used to select the best subset of variables and
to build predictive regression models in order to study the
relationships between the signals obtained from the instru-
ments (e-nose, e-tongue and spectrophotometer) and the
sensory parameters. Regression models were also calcu-
lated, trying to explain the overall quality of wines. In these
models, the signals represented the independent variables.
Since a high number of independent variables was available,
the selection of the best subset was required for two reasons:
in a regression model, the ratio between the number of sam-
ples and variables should be high, as statisticians suggest
(Frank & Friedman, 1993); the fitting performance of a
regression model always rises when the number of indepen-
dent variables increases, while the predictive performance
decreases when non-useful variables are added to the regres-
sion model. The models were built setting the maximum
number of variables to 4. This is a reasonable limit consid-
ering the available number of samples and the regression
technique involved (ordinary least square regression).

For each sensory parameter, the models with the highest
value of Q2 leave-one-out were taken into account and val-
idated by the Bootstrap procedure. It is well known that a
validation procedure is required to recognize stable regres-
sion models. Models with a good fitting performance (i.e.
high R2 value) do not always have an acceptable predictive
performance (i.e. high Q2 leave-one-out value). Further-
more, Q2 leave-one-out is often an overoptimistic predic-
tive parameter. In fact, regression models often turned
out not to be as predictive as expected if more severe vali-
dation was applied. In this work, the Bootstrap procedure
was used and repeated 8000 times for each model and the
model with the highest value of Q2 bootstrap was selected
as the best for the analysed sensory descriptor.

In Fig. 3, the scatter plots of the sensorial descriptors are
shown. Predicted and calculated versus experimental values
are plotted. R2 values describe the fitting performance of
the regression model, while Q2 leave-one-out and Q2 boot-
strap give information about the predictive capability of
the model. As seen, an acceptable accuracy in prediction
was obtained for global descriptors such as body, overall
quality, alcohol and astringency. Also the acceptable
regression of bitterness, total fruit flavour and wood fla-
vour has to be recognized. The regression toward spicy fla-
vour and aroma (spicy, total fruit and wood) was quite
poor and, in particular, these models had a quite good fit-
ting capability but their predictive performance was lim-
ited, as shown by Q2 bootstrap.

It was not possible to build a model for sourness since
all the regression quality parameters were not acceptable.

In Table 3 the variables involved in each selected model
are reported. As seen, the model built for the astringency is
composed only of e-tongue variables, showing that this
device can be useful for predicting in a rapid and simple
way, an important quality parameter, as astringency is e-
tongue variables were also involved in the predictive models
of body, alcohol and overall quality; the spectrophoto-
metric evaluation of colour (L; a/b) and the non-anthocyanic



Fig. 4. Williams plots of the selected models showing the leverage values versus the standardised residuals in prediction. Reference lines are shown both
for leverage critical value and for standardised residual in prediction critical value.
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flavonols appeared to be important in defining the body,
while total phenols and total flavonols were included in the
predictive model of alcohol. It is interesting to note that
the wine phenolic profile (total flavonols, non-anthocyanic
flavonols and total anthocyanins) turned out to be impor-
tant for predicting the wine overall quality. This result is par-
ticularly significant, since it is well known that the phenolic
compounds are related to wine sensorial descriptors nor-
mally associated with wine preference.

Of importance for the predictive models of flavour and
aroma descriptors were some e-nose variables (MOS 7;
MOS 1 and MOS 9) and the spectrophotometric evaluation
of total phenols, and phenolic fractions. Particularly inter-
esting is the predictive model of wood flavour, composed
only of an e-nose variable (MOS 7) and the colour vari-
ables (L, a/b).

To better evaluate the selected models, the Williams plots
were built to check the presence of outliers and/or objects
with high influence on the results. Leverage values and stan-
dardised residuals in prediction are reported, respectively,
on x and y axes. In each plot, reference lines are also
reported both for leverage critical value and for-standar-
dised residuals in/prediction critical value. Objects with
leverage greater than the critical value can be interpreted
as samples with too much influence on the regression model.
In the same way, samples with a standardised residual
greater than the critical value are characterized by a poor
prediction value.

As seen (Fig. 4), all samples had acceptable leverage val-
ues while few have standardised residuals in prediction
higher than the critical value in more then one model (sam-
ples 1 and 10 for total fruits flavour and aroma, sample 10
also for alcohol, sample 9 for spicy and wood aroma).

From all these results it is possible to conclude that the
proposed analytical methods (sensor arrays and spectro-
photometric determinations) are able to describe and pre-
dict a large part of the dry red wine sensorial information
produced by a panel. Only for one descriptor (sourness)
was it not possible to build an acceptable regression model,
while models of all aroma descriptors and spicy flavour
could be improved to give a significant predictive capability.

4. Conclusion

The results of the present work demonstrated the feasibil-
ity of the e-nose, e-tongue and spectrophotometric determi-
nations for predicting with a good accuracy, some sensorial
parameters and the overall quality of dry red wines.

GAs and Bootstrap techniques are computationally
time-consuming but this is not to be considered a serious
problem, since the sensorial data collection is more time-
consuming than the proposed procedures and the predic-
tive models obtained are stable.

Even if a larger number of wine samples are required to
better validate the predictive models, the present results
demonstrate the possibility of using these innovative ana-
lytical methods in order to obtain, in a rapid and objective
way, information about the sensorial properties of wines.
Moreover, the statistical methods applied could represent
a rational operative procedure for building regression mod-
els with real predictive capability and, consequently, appli-
cable to unknown samples.
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